skip to main content


Search for: All records

Creators/Authors contains: "Thomas, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The phenology of critical biological events in aquatic ecosystems is rapidly shifting due to climate change. Growing variability in phenological cues can increase the likelihood of trophic mismatches (i.e., mismatches in the timing of peak prey and predator abundances), causing recruitment failures in important fisheries. We assessed changes in the spawning phenology of walleye (Sander vitreus) in 194 Midwest US lakes to investigate factors influencing walleye phenological responses to climate change and associated climate variability, including ice‐off timing, lake physical characteristics, and population stocking history. Ice‐off phenology shifted earlier, about three times faster than walleye spawning phenology over time. Spawning phenology deviations from historic averages increased in magnitude over time, and large deviations were associated with poor offspring survival. Our results foreshadow the risks of increasingly frequent natural recruitment failures due to mismatches between historically tightly coupled spawning and ice‐off phenology.

     
    more » « less
    Free, publicly-accessible full text available February 26, 2025
  2. Abstract

    We report commissioning observations of the Six1430 nm solar coronal line observed coronagraphically with the Cryogenic Near-Infrared Spectropolarimeter at the National Science Foundation’s Daniel K. Inouye Solar Telescope. These are the first known spatially resolved observations of this spectral line, which has strong potential as a coronal magnetic field diagnostic. The observations target a complex active region located on the solar northeast limb on 2022 March 4. We present a first analysis of these data that extracts the spectral line properties through a careful treatment of the variable atmospheric transmission that is known to impact this spectral window. Rastered images are created and compared with extreme-UV observations from the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA) instrument. A method for estimating the electron density from the Sixobservations is then demonstrated that makes use of the forbidden line density-sensitive emissivity and an emission-measure analysis of the SDO/AIA bandpass observations. In addition, we derive an effective temperature and nonthermal line width across the region. This study informs the calibration approaches required for more routine observations of this promising diagnostic line.

     
    more » « less
  3. In a technology-centric world, leveraging digital tools such as chatbots allows educators to engage students in ways that may be more accessible for both parties, particularly in large lecture classrooms. This report details the development of an interactive web-based chatbot to curate content for writing about chemistry in context. Students were assigned a 500-word paper where they discuss general chemistry concepts through the lens of a timely, sustainability-related topic, i.e., water footprint, carbon footprint, or embodied carbon. Discussed herein are the development of the decision tree, the chatbot’s components, and results from the initial implementation in a large lecture general chemistry classroom. Over 78% of the 347 enrolled students (271) used the chatbot over 350 times in the 3 weeks leading up to the assigned due date of the paper. Eighty-three percent of the interactions were captured for further analysis, which showed that 22% of students used the chatbot more than once. Forty-six percent of recorded interactions were used to aid students in developing or refining their idea for the assignment. The curated chatbot technology reported here for writing assignments in chemistry can be readily adapted to other aspects of coursework in chemistry. 
    more » « less
    Free, publicly-accessible full text available October 10, 2024
  4. Abstract

    The rapid progress that plasma wakefield accelerators are experiencing is now posing the question as to whether they could be included in the design of the next generation of high-energy electron-positron colliders. However, the typical structure of the accelerating wakefields presents challenging complications for positron acceleration. Despite seminal proof-of-principle experiments and theoretical proposals, experimental research in plasma-based acceleration of positrons is currently limited by the scarcity of positron beams suitable to seed a plasma accelerator. Here, we report on the first experimental demonstration of a laser-driven source of ultra-relativistic positrons with sufficient spectral and spatial quality to be injected in a plasma accelerator. Our results indicate, in agreement with numerical simulations, selection and transport of positron beamlets containing$$N_{e+}\ge 10^5$$Ne+105positrons in a 5% bandwidth around 600 MeV, with femtosecond-scale duration and micron-scale normalised emittance. Particle-in-cell simulations show that positron beams of this kind can be guided and accelerated in a laser-driven plasma accelerator, with favourable scalings to further increase overall charge and energy using PW-scale lasers. The results presented here demonstrate the possibility of performing experimental studies of positron acceleration in a laser-driven wakefield accelerator.

     
    more » « less
  5. Abstract

    Ocean waves excite continuous globally observable seismic signals. We use data from 52 globally distributed seismographs to analyze the vertical component primary microseism wavefield at 14–20 s period between the late 1980s and August 2022. This signal is principally composed of Rayleigh waves generated by ocean wave seafloor tractions at less than several hundred meters depth, and is thus a proxy for near-coastal swell activity. Here we show that increasing seismic amplitudes at 3σsignificance occur at 41 (79%) and negative trends occur at 3σsignificance at eight (15%) sites. The greatest absolute increase occurs for the Antarctic Peninsula with respective acceleration amplitude and energy trends ( ± 3σ) of 0.037 ± 0.008 nm s−2y−1(0.36 ± 0.08% y−1) and 4.16 ± 1.07 nm2 s−2y−1(0.58 ± 0.15% y−1), where percentage trends are relative to historical medians. The inferred global mean near-coastal ocean wave energy increase rate is 0.27 ± 0.03% y−1for all data and is 0.35 ± 0.04% y−1since 1 January 2000. Strongly correlated seismic amplitude station histories occur to beyond 50of separation and show regional-to-global associations with El Niño and La Niña events.

     
    more » « less
  6. In thiazolo[5,4-d]thiazole (TTz)-based crystals, synergistic non-covalent interactions govern photophysical properties. Therefore, by modulating molecular-packing, TTz-based crystals can be tailored to fit optical and photonic applications such as white-light emissive organic phosphors.

     
    more » « less
    Free, publicly-accessible full text available November 27, 2024
  7. ABSTRACT

    The Sagittarius Dwarf Spheroidal galaxy (Sgr) is investigated as a target for dark matter (DM) annihilation searches utilizing J-factor distributions calculated directly from a high-resolution hydrodynamic simulation of the infall and tidal disruption of Sgr around the Milky Way. In contrast to past studies, the simulation incorporates DM, stellar and gaseous components for both the Milky Way and the Sgr progenitor galaxy. The simulated distributions account for significant tidal disruption affecting the DM density profile. Our estimate of the J-factor value for Sgr, JSgr = 1.48 × 1010 M$_\odot ^2$ kpc−5 (6.46 × 1016 GeV cm−5), is significantly lower than found in prior studies. This value, while formally a lower limit, is likely close to the true J-factor value for Sgr. It implies a DM cross-section incompatibly large in comparison with existing constraints would be required to attribute recently observed gamma-ray emission from Sgr to DM annihilation. We also calculate a J-factor value using a NFW profile fitted to the simulated DM density distribution to facilitate comparison with past studies. This NFW J-factor value supports the conclusion that most past studies have overestimated the dark matter density of Sgr on small scales. This, together with the fact that the Sgr has recently been shown to emit gamma-rays of astrophysical origin, complicate the use of Sgr in indirect DM detection searches.

     
    more » « less
  8. Abstract Sea ice primary production is considered a valuable energy source for Arctic marine food webs, yet the extent remains unclear through existing methods. Here we quantify ice algal carbon signatures using unique lipid biomarkers in over 2300 samples from 155 species including invertebrates, fish, seabirds, and marine mammals collected across the Arctic shelves. Ice algal carbon signatures were present within 96% of the organisms investigated, collected year-round from January to December, suggesting continuous utilization of this resource despite its lower proportion to pelagic production. These results emphasize the importance of benthic retention of ice algal carbon that is available to consumers year-round. Finally, we suggest that shifts in the phenology, distribution and biomass of sea ice primary production anticipated with declining seasonal sea ice will disrupt sympagic-pelagic-benthic coupling and consequently the structure and the functioning of the food web which is critical for Indigenous Peoples, commercial fisheries, and global biodiversity. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  9. Abstract

    We present high-precision radial velocity observations of Gaia BH1, the nearest known black hole (BH). The system contains a solar-type G star orbiting a massive dark companion, which could be either a single BH or an inner BH + BH binary. A BH + BH binary is expected in some models where Gaia BH1 formed as a hierarchical triple, which is attractive because they avoid many of the difficulties associated with forming the system through isolated binary evolution. Our observations test the inner binary scenario. We have measured 115 precise RVs of the G star, including 40 from ESPRESSO with a precision of 3–5 m s−1, and 75 from other instruments with a typical precision of 30–100 m s−1. Our observations span 2.33 orbits of the G star and are concentrated near a periastron passage, when perturbations due to an inner binary would be largest. The RVs are well-fit by a Keplerian two-body orbit and show no convincing evidence of an inner binary. UsingREBOUNDsimulations of hierarchical triples with a range of inner periods, mass ratios, eccentricities, and orientations, we show that plausible inner binaries with periodsPinner≳ 1.5 days would have produced larger deviations from a Keplerian orbit than observed. Binaries withPinner≲ 1.5 days are consistent with the data, but these would merge within a Hubble time and would thus imply fine-tuning. We present updated parameters of Gaia BH1's orbit. The RVs yield a spectroscopic mass functionfMBH=3.9358±0.0002M—about 7000σabove the ∼2.5Mmaximum neutron star mass. Including the inclination constraint from Gaia astrometry, this implies a BH mass ofMBH= 9.27 ± 0.10M.

     
    more » « less